\qquad

PRELIMINARY
 PHYSICS
 SIGMA
 SCIENCE
 Q\&A

Week 2: Collisions I

Question 1 (3 marks)
An object of mass 100 kg travelling at $12 \mathrm{~ms}^{-1}$ collides with a stationary object of 220 kg . If these objects stick together, determine the initial velocity of the wreckage.

Worked solution:

Law of conservation of momentum states that $\Delta \mathrm{p}=0$.
$\therefore \mathrm{p}_{\mathrm{i}}=\mathrm{p}_{\mathrm{f}}$
Assigning object 1 to the 100 kg mass and object 2 to the 220 kg mass, we end up with:

$$
\mathbf{m}_{1} \mathbf{u}_{1}+\mathbf{m}_{2} \mathbf{u}_{2}=\mathbf{m}_{1} \mathbf{v}_{\mathbf{1}}+\mathbf{m}_{2} \mathbf{v}_{\mathbf{2}}
$$

HOWEVER, seeing as the objects stick together, they both move with the same velocity after the collision, hence:

$$
\begin{gathered}
\mathbf{m}_{1} \mathbf{u}_{1}+\mathbf{m}_{2} \mathbf{u}_{\mathbf{2}}=\left(\mathbf{m}_{1}+\mathbf{m}_{\mathbf{2}}\right) \mathbf{v} \\
(100 \times 12)+(220 \times 0)=(100+220) v \\
\therefore v=\frac{(100 \times 12)+(220 \times 0)}{(100+220)}=3.75 \mathrm{~ms}^{-1}
\end{gathered}
$$

in the same direction as the initial velocity of the 100 kg mass (Right)

Question 2 (3 marks)
An object of mass 150 kg travelling at $12 \mathrm{~ms}^{-1}$ collides with an object of mass 275 kg travelling at the same speed in the opposite direction. If these objects stick together, determine the initial velocity of the wreckage.

Worked solution:

Law of conservation of momentum states that $\Delta \mathrm{p}=0$.
$\therefore \mathrm{p}_{\mathrm{i}}=\mathrm{p}_{\mathrm{f}}$
Assigning object 1 to the 150 kg mass and object 2 to the 275 kg mass, we end up with:

$$
\mathbf{m}_{1} \mathbf{u}_{1}+\mathbf{m}_{2} \mathbf{u}_{2}=\mathbf{m}_{1} \mathbf{v}_{\mathbf{1}}+\mathbf{m}_{2} \mathbf{v}_{\mathbf{2}}
$$

HOWEVER, seeing as the objects stick together, they both move with the same velocity after the collision, hence:

$$
\mathbf{m}_{1} \mathbf{u}_{1}+\mathbf{m}_{2} \mathbf{u}_{2}=\left(\mathbf{m}_{1}+\mathbf{m}_{2}\right) \mathbf{v}
$$

Seeing as they are moving in opposite directions, we must note that one of the objects must have a negative initial velocity. By convention, left is defined as negative and hence we will define the 275 kg as having a negative initial velocity.

$$
\begin{aligned}
& (150 \times 12)+(275 \times-12)=(150+275) v \\
& \therefore v=\frac{(150 \times 12)+(275 \times-12)}{(150+275)}=-3.5 m s^{-1}
\end{aligned}
$$

$\therefore v=3.5 \mathrm{~ms}^{-1}$ in the same direction as the 275 kg objects initial motion (Left)

Question 3 (3 marks)
An object of mass 100 kg travelling at $35 \mathrm{~ms}^{-1}$ collides with an object of mass 220 kg travelling at $12 \mathrm{~ms}^{-1}$ in the same direction as the 100 kg mass. After the collision, the 220 kg object gains $2 \mathrm{~ms}^{-1}$, determine the final velocity of the 100 kg mass.

Worked solution:

Law of conservation of momentum states that $\Delta \mathrm{p}=0$.
$\therefore \mathrm{p}_{\mathrm{i}}=\mathrm{p}_{\mathrm{f}}$
Assigning object 1 to the 100 kg mass and object 2 to the 220 kg mass, we end up with:

$$
\mathbf{m}_{1} \mathbf{u}_{1}+\mathbf{m}_{2} \mathbf{u}_{2}=\mathbf{m}_{1} \mathbf{v}_{\mathbf{1}}+\mathbf{m}_{2} \mathbf{v}_{2}
$$

These objects MAY NOT stick together, so we cannot reduce it to the equation which we used in questions $2 \& 3$.

$$
\begin{gathered}
(100 \times 35)+(220 \times 12)=100 v_{1}+(220 \times(12+2)) \\
\therefore v_{1}=\frac{(100 \times 35)+(220 \times 12)-(220 \times 14)}{100}=30.6 \mathrm{~ms}^{-1}=31 \mathrm{~ms}^{-1}\left(2 \mathrm{sf} f^{*}\right) R \mathrm{Right}
\end{gathered}
$$

* Note:
- ambiguity exists in number of sig figs in 100 , but most teachers hate 1 sf.

